Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Neng-Fang She, Hui-Zhen Guo, Zhi-Guo Wang and An-Xin Wu*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.009 \text{ Å}$ R factor = 0.058 wR factor = 0.157 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diethyl 6,9-dibromo-1,4-dioxo-1,2,3,4,5,10hexahydro-2,3,4a,10a-tetraazabenzo[g]cyclopenta[cd]azulene-2a,10b-dicarboxylate

The title compound, $C_{18}H_{18}Br_2N_4O_6$, is an important intermediate for the synthesis of molecular clips. Intermolecular $N-H\cdots O$ hydrogen bonds form eight-membered rings. No $\pi-\pi$ stacking is observed. Received 21 June 2005 Accepted 8 July 2005 Online 16 July 2005

Comment

The derivatives of glycoluril are well known in studies of organic supramolecular structures (Isaacs & Fettinger, 1999; Burnett *et al.*, 2003; Chakraborty *et al.*, 2002). In addition, glycoluril derivatives have significant potential in crystal engineering studies (Wu *et al.*, 2002; Johnson *et al.*, 2002). In this paper, we present the X-ray crystallographic analysis of the title compound, (I), which is an important intermediate for the preparation of S- and C-shaped methylene-bridged glycoluril dimers (Wu *et al.*, 2002).

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The molecules

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

ellipsoids are drawn at the 50% probability level.

are linked by intermolecular N-H···O hydrogen bonds (Table 2 and Fig. 2), utilizing a carbonyl O atom as acceptor. As a result, an eight-membered ring is formed, the topological motif of which corresponds to the first level graph-set descriptor $R_2^2(8)$ (Bernstein *et al.*, 1995). No π - π stacking is observed.

Experimental

The title compound was synthesized according to the literature method of Wu *et al.* (2002). Crystals appropriate for data collection were obtained by slow evaporation of a chloroform solution at 283 K.

 $D_x = 1.757 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 6947 reflections $\theta = 2.33-23.98^{\circ}$ $\mu = 3.97 \text{ mm}^{-1}$ T = 292 (2) K

Block, colorless

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 25.1^{\circ}$

 $h = -14 \rightarrow 14$

 $k = -12 \rightarrow 12$

 $l = -20 \rightarrow 20$

 $0.40 \times 0.30 \times 0.30$ mm

3656 independent reflections

2925 reflections with $I > 2\sigma(I)$

Crystal data

$C_{18}H_{18}Br_2N_4O_6$
$M_r = 546.18$
Monoclinic, $P2_1/c$
a = 12.0665 (11) Å
b = 10.3050 (10) Å
c = 17.4969 (17) Å
$\beta = 108.371 \ (2)^{\circ}$
$V = 2064.8 (3) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 4K CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.238$, $T_{max} = 0.304$ 14418 measured reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0709P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.058$ $w = 1/[\sigma^2(F_o^2) + (0.0709P)^2$
 $wR(F^2) = 0.157$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.03 $(\Delta/\sigma)_{max} < 0.001$

 3656 reflections
 $\Delta\rho_{max} = 1.02$ e Å⁻³

 279 parameters
 $\Delta\rho_{min} = -1.09$ e Å⁻³

 H atoms treated by a mixture of independent and constrained refinement
 σ^2

			0	
Selected	geometric	parameters	(A,	°).

Br1-C2	1.906 (7)	C13-C14	1.488 (8)
C1-C2	1.398 (7)	C17-C18	1.470 (8)
C1-C6	1.403 (8)		
N2-C11-C12	107.8 (4)	C16-C15-C11	119.9 (4)
N3-C15-C11	101.4 (3)		
C8-C1-C6-C7	-1.1(6)	C12-C11-N2-C8	-69.9 (5)
C6-C7-N1-C9	-76.0 (5)		

Table	2
-------	---

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N4-H4A\cdotsO1^{i}$	0.86 (4)	2.13 (5)	2.965 (5)	166 (7)	
N3-H3A···O2 ⁱⁱ	0.81(4)	1.95 (5)	2.750 (5)	170 (8)	

The N-bound H atoms were located in a difference map and refined freely [N-H = 0.81 (4)-0.86 (4) Å]; their displacement parameters were allowed for with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm N})$. The methyl H atoms were positioned geometrically (C-H = 0.96 Å). The constraint $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ was applied, but each group was allowed to rotate freely about its C-C bond. All other H atoms were placed in geometrically idealized positions [0.93 (for CH) or 0.97 Å (for CH₂)], and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The highest peak and deepest hole are located 0.87 and 0.85 Å, respectively, from atom Br2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Central China Normal University, National Natural Science Foundation of China (No. 20472022), for financial support.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, C. A., Lagona, J., Wu, A., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). *Tetrahedron*, **59**, 1961–1970.
- Chakraborty, A., Wu, A., Witt, D., Lagona, J., Fettinger, J. C. & Isaacs, L. (2002). J. Am. Chem. Soc. 124, 8297–8306.
- Isaacs, L. & Fettinger, J. C. (1999). Chem. Commun. pp. 2549-2550.
- Johnson, D. W., Palmer, L. C., Hof, F., Iovine, P. M. & Rebek, J. (2002). *Chem. Commun.* pp. 2228–2229.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817–5830.