Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Neng-Fang She, Hui-Zhen Guo, Zhi-Guo Wang and An-Xin Wu*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.058$
$w R$ factor $=0.157$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethyl 6,9-dibromo-1,4-dioxo-1,2,3,4,5,10-hexahydro-2,3,4a,10a-tetraazabenzo[g]-cyclopenta[cd]azulene-2a,10b-dicarboxylate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$, is an important intermediate for the synthesis of molecular clips. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form eight-membered rings. No $\pi-\pi$ stacking is observed.

Comment

The derivatives of glycoluril are well known in studies of organic supramolecular structures (Isaacs \& Fettinger, 1999; Burnett et al., 2003; Chakraborty et al., 2002). In addition, glycoluril derivatives have significant potential in crystal engineering studies (Wu et al., 2002; Johnson et al., 2002). In this paper, we present the X-ray crystallographic analysis of the title compound, (I), which is an important intermediate for the preparation of S - and C -shaped methylene-bridged glycoluril dimers (Wu et al., 2002).

(I)

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The molecules

The molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 21 June 2005
Accepted 8 July 2005
Online 16 July 2005
are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2), utilizing a carbonyl O atom as acceptor. As a result, an eight-membered ring is formed, the topological motif of which corresponds to the first level graph-set descriptor $R_{2}^{2}(8)$ (Bernstein et al., 1995). No $\pi-\pi$ stacking is observed.

Experimental

The title compound was synthesized according to the literature method of Wu et al. (2002). Crystals appropriate for data collection were obtained by slow evaporation of a chloroform solution at 283 K .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$
$M_{r}=546.18$
Monoclinic, $P 2_{1} / c$
$a=12.0665$ (11) \AA
$b=10.3050$ (10) \AA
$c=17.4969$ (17) \AA
$\beta=108.371$ (2) ${ }^{\circ}$
$V=2064.8(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 4K CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.238, T_{\text {max }}=0.304$
14418 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.157$
$S=1.03$
3656 reflections
279 parameters
H atoms treated by a mixture of independent and constrained refinement

$D_{x}=1.757 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 6947
reflections
$\theta=2.33-23.98^{\circ}$
$\mu=3.97 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.40 \times 0.30 \times 0.30 \mathrm{~mm}$

3656 independent reflections
2925 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-14 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0709 P)^{2}\right.} \\
&+5.0818 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.02 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.09 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 2$	$1.906(7)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.488(8)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.398(7)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.470(8)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.403(8)$		
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$107.8(4)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 11$	$119.9(4)$
$\mathrm{N} 3-\mathrm{C} 15-\mathrm{C} 11$	$101.4(3)$		
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-1.1(6)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 8$	$-69.9(5)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9$	$-76.0(5)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4A $\cdots \mathrm{O}^{\mathrm{i}}{ }^{\mathrm{i}}$	$0.86(4)$	$2.13(5)$	$2.965(5)$	$166(7)$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.81(4)$	$1.95(5)$	$2.750(5)$	$170(8)$
Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2} ;$ (ii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$				

Figure 2
The crystal packing of (I). Dashed lines indicate hydrogen bonds.

The N -bound H atoms were located in a difference map and refined freely $[\mathrm{N}-\mathrm{H}=0.81$ (4)-0.86 (4) \AA]; their displacement parameters were allowed for with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The methyl H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.96 \AA$). The constraint $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ was applied, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions [0.93 (for CH) or $0.97 \AA\left(\right.$ for $\left.\mathrm{CH}_{2}\right)$], and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. The highest peak and deepest hole are located 0.87 and $0.85 \AA$, respectively, from atom Br 2 .

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University, National Natural Science Foundation of China (No. 20472022), for financial support.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, C. A., Lagona, J., Wu, A., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. \& Isaacs, L. (2003). Tetrahedron, 59, 1961-1970.

Chakraborty, A., Wu, A., Witt, D., Lagona, J., Fettinger, J. C. \& Isaacs, L. (2002). J. Am. Chem. Soc. 124, 8297-8306.

Isaacs, L. \& Fettinger, J. C. (1999). Chem. Commun. pp. 2549-2550.
Johnson, D. W., Palmer, L. C., Hof, F., Iovine, P. M. \& Rebek, J. (2002). Chem. Coттии. pp. 2228-2229.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. \& Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.

